| 156 | 0 | 24 |
| 下载次数 | 被引频次 | 阅读次数 |
人体关节角度的连续预测对于提高人机协同控制至关重要.为了提高关节角度的预测精度,提出了一种基于特征的卷积神经网络-双向长短期记忆网络(Convolutional Neural Network-Bidirectional long short-term memory network, CNN-BiLSTM)模型并对下肢关节角度进行了连续预测.采集了人体在正常步态、上楼梯运动时下肢的表面肌电信号和膝关节角度,对信号进行预处理,利用主成分分法进行特征值融合,与传统的支持向量机、长短期记忆网络、卷积神经网络等算法预测效果进行对比,结果表明CNN-BiLSTM模型对关节角度的拟合效果最优,所提模型能够更有效地预测不同运动模式下的膝关节角度,在促进人机协作方面具有更好的性能.
Abstract:Continuous prediction of human joint angles is essential for enhancing human-machine collaborative control. In order to improve prediction accuracy, this paper proposes a feature-based Convolutional Neural Network-Bidirectional Long Short Term Memory Network(CNN-BiLSTM) model to continuously predict the joint angles of lower limbs. The paper collects surface electromyography signals and knee joint angles of the lower limbs during normal gait and stair climbing movements, preprocesses the signals, uses principal component analysis for feature value fusion, and then compares the prediction performance with traditional algorithms such as support vector machines, long short-term memory network and convolutional neural network, and other algorithms, the results show that CNN-BiLSTM model has the best fitting effect on the joint angle, and the proposed model can more effectively predict the angles in different sports modes, and has better performance in promoting human-machine collaboration.
[1]曹梦琳,陈宇豪,王珏,等.基于表面肌电图的人体运动意图识别研究进展[J].中国康复理论与实践,2021,27(5):595-603.
[2]Sun B X,Cheng G,Dai Q M,et al.Human Motion Intention Recognition Based on EMG Signal and Angle Signal[J].Cogn Comput Syst,2021,3:37-47.
[3]侯增广,赵新刚,程龙,等.康复机器人与智能辅助系统的研究进展[J].自动化学报,2016,42(12):1765-1779.
[4]马一凡,魏德健,冯妍妍,等.表面肌电关节连续运动估计的研究进展[J].计算机工程与应用,2024(7):1-15.
[5]Zhao Y H,Li Z H,Zhang Z Q,et al.An EMG-driven Musculoskeletal Model for Estimation of Wrist Kinematics Using Mirrored Bilateral Movement[J].Biomedical Signal Processing and Control,2023,81:104480.
[6]Qin P J,Shi X,Zhang C M,et al.Continuous Estimation of The Lower-limb Multi-joint Angles Based on Muscle Synergy Theory and State-space model[J].IEEE Sensors Journal,2023,23(8):8491-8503.
[7]Sun N,Cao M L,Chen Y H,et al.Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals[J].In IEEE Transactions on Neural Systems and Rehabilitation Engineering,2022,30:2446-2455.
[8]赵紫慧,张绪树,郭媛,等.基于表面肌电信号的关节角度预测模型[J].太原理工大学学报,2024(7):1-9.
[9]石永杰,高学山,罗定吉,等.基于肌电信号和极限学习机的下肢关节运动预测[J].兵工自动化,2022,41(2):87-91+96.
[10]刘克平,滕召纬,孙中波,等.基于自适应模糊神经网络的下肢关节角度估计[J].计算机仿真,2022,39(9):456-461.
[11]Liu G,Zhang L,Han B,et al.sEMG-Based Continuous Estimation of Knee Joint Angle Using Deep Learning with Convolutional Neural Network[C].Canada:IEEE,2019:140-145.
[12]张娜,张明进,王晓冬,等.基于表面肌电信号的手指关节角度估计方法[J].电子测量与仪器学报,2023,37(8):60-70.
[13]胡瑢华,姚圣,曾成.面向康复训练的多通道mRMR-PSO肌电特征选择算法[J].电子测量技术,2022,45(11):72-77.
[14]林志灿,彭清和.基于增量深度学习的风机叶片震动异常预测方法研究[J].菏泽学院学报,2023,45(5):45-49.
[15]Bao T Z,Zaidi S A R,Xie S Q,et al.A CNN-LSTM Hybrid Model for Wrist Kinematics Estimation Using Surface Electromyography[J].In IEEE Transactions on Instrumentation and Measurement,2021,70:1-9.
基本信息:
DOI:10.16393/j.cnki.37-1436/z.2024.05.011
中图分类号:TN911.7;TP183;R318
引用信息:
[1]林竹,凌六一.基于表面肌电信号的膝关节角度预测方法[J].菏泽学院学报,2024,46(05):47-54.DOI:10.16393/j.cnki.37-1436/z.2024.05.011.
基金信息:
安徽理工大学环境友好材料与职业健康研究院(芜湖)研发专项(ALW2022YF06); 安徽省高校学科(专业)拔尖人才学术支持项目(gxbjZD2021052); 安徽省高校协同创新计划项目(GXXT-2022-053)