一类变系数非齐次电报方程的数值解法Numerical Method for Non-homogeneous Telegraph Equation with Variable Coefficient
任佰荟,苏令德,姜自武
摘要(Abstract):
利用特解方法数值求解一类变系数非齐次电报方程.首先用有限差分方法对时间方向进行离散,进而转化为在空间方向上利用特解方法进行近似,最终利用待定系数法逐步求出在不同时刻的方程的数值解.利用Matlab程序对给定的方程进行数值求解并进行误差估计.通过数值算例,可见所采用的数值方法具有较高的近似精度.
关键词(KeyWords): 变系数;非齐次电报方程;数值解;径向基函数;特解法
基金项目(Foundation): 国家自然科学基金青年基金资助项目(11301252)
作者(Author): 任佰荟,苏令德,姜自武
DOI: 10.16393/j.cnki.37-1436/z.2016.02.001
参考文献(References):
- [1]Jiang Z,Su L,Jiang T.A Meshfree Method for Numerical Solution of Nonhomogeneous Time-Dependent Problems[J].Abstract and Applied Analysis,2014(4).
- [2]Dehghan M.Parameter determination in a partial differential equation from the overspecified data[J].Mathematical and Computer Modelling,2005,41(s 2-3):196-213.
- [3]Dehghan M.Implicit Collocation Technique for Heat Equation with Non-Classic Initial Condition[J].International Journal of Nonlinear Sciences and Numerical Simulation,2006,7(4):461-66.
- [4]Bhrawy A H,Baleanu D.A Spectral Legendre-Gauss-Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients[J].Reports on Mathematical Physics,2013,72(2):219-233.
- [5]Dehghan M,Shokri A.A numerical method for solving the hyperbolic telegraph equation[J].Numerical Methods for Partial Differential Equations,2008,24(4):1080-1093.
- [6]Dehghan M,Shokri A.Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions[J].Journal of Computational and Applied Mathematics,2009,230(2):400-410.
- [7]Chen C S,Brebbia C A,Power H.Dual reciprocity method using compactly supported radial basis functions[J].Communications in Numerical Methods in Engineering,1999,15(2):137-150.
- [8]Tongsong Jiang,Ming Li,C.S.Chen.The Method of Particular Solutions for Solving Inverse Problems of a Nonhomogeneous Convection-Diffusion Equation with Variable Coefficients[J].Numerical Heat Transfer Applications,2012,61(5):338-352.
- [9]Liu G,Karamanlidis D.Mesh Free Methods:Moving Beyond the Finite Element Method[J].Applied Mechanics Reviews,2003,56(2):B17-B18.
- [10]Chen C S,Rashed Y F.Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM[J].Mechanics Research Communications,1998,25(25):195-201.
- [11]Li M,Jiang T,Hon Y C.A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem[J].Engineering Analysis with Boundary Elements,2010,34(9):785-792.