一类二阶有理差分方程动力学定理的证明Proof of Dynamic Theorems for a Class of Rational Difference Equations
全卫贞,李晓培,凌伟钟,阿的史古,陈月婷,全国标
摘要(Abstract):
根据二阶有理差分方程的理论,采用3种方法证明了二阶有理差分方程■的动力学定理,即通过设置不同的条件,得到了平衡解■的局部渐近稳定性、不稳定性、排斥点或不稳定鞍点等不同的结果.
关键词(KeyWords): 差分方程;平衡解;局部渐近稳定;不稳定鞍点;排斥点
基金项目(Foundation): 国家自然科学基金项目(11761011);; 广东省普通高校特色创新项目(2020KTSCX351)
作者(Author): 全卫贞,李晓培,凌伟钟,阿的史古,陈月婷,全国标
DOI: 10.16393/j.cnki.37-1436/z.2022.02.020
参考文献(References):
- [1]Kulenovic M R S,Ladas G.Dynamics of the second rational difference equations with open problems and conjectures [M].New York:Chapman Hall/CRC,2002:1-134.
- [2]Kocic v L,Ladas G.Global behavior of nonlinear difference equations of higher order with applications[M].Dordrecht:Kluwer Academic Publishers,1993:1-121.
- [3]Kelley W G,Peterson A C.Difference Equations with Applications [M].New York:Acadv.Press,1991:1-98.
- [4]R.P.Agarwal,Difference Equations and Inequalities[M].New York:Marcel Dekker,1992:14-15.
- [5]R.P.Agarwal,S.R.Grace and D.Oregan,Oscillation Theory for Difference Equations and Functioncal Difference Equations[M].Dordrecht:Kluwer Academic Publishers,2000:45-48.
- [6]W.A.Kosmala,M.R.S.Kulenovic,G.ladas and C.T.Teixeira,On the RecursiveSequence yn+1=(p+yn-1)/(qyn+yn-1)[J],Journal of Mathematical Analysis and Applications,2000 (251):501-532.
- [7]全卫贞.一类三阶有理差分方程的奇点集和解的渐近性[J].数学的实践与认识,2017,47(01):42-48.
- [8]李晓艳,谢建民.一类高阶有理差分方程的全局行为[J].延边大学学报(自然科学版),2016,42(04):75-81.
- [9]李明山,徐江明,周效良.一类差分方程的动力学性质[J].重庆师范大学学报,2021,38(03):30-35.
- [10]杨琰琰,黄志刚,胡梦薇.一类非线性差分方程解的若干性质[J].苏州科技大学学报,2018,3(23):23-26.
- [11]王乙萍,黄志刚.亚纯函数差分多项式的零点与唯一性[J].苏州科技大学学报,2020,4(13):13-18.