广义Joseph-Egri方程的对称、显式解和守恒律Symmetry Reductions,Conservation Laws and Explicit Solutions of Generalized Joseph-Egri Equation
孙世飞,刘汉泽,辛祥鹏,常丽娜
摘要(Abstract):
利用李群方法分析研究了广义Joseph-Egri方程,求出了该方程的李点对称,之后运用李群方法将偏微分方程约化成常微分方程,结合exp(-ψ(ω))方法得到了一些广义Joseph-Egri方程的新显式解,包括双曲函数解,三角函数解和有理函数解等.进一步给出了Joseph-Egri方程的守恒律.
关键词(KeyWords): 广义Joseph-Egri方程;非线性方程;李群分析;精确解;守恒律
基金项目(Foundation): 国家自然科学基金资助项目(11171041)
作者(Author): 孙世飞,刘汉泽,辛祥鹏,常丽娜
DOI: 10.16393/j.cnki.37-1436/z.2019.05.003
参考文献(References):
- [1]田畴.李群及其在微分方程中的应用[M].北京:科学出版社,2001.
- [2]Joseph R I,Egri R.Another possible model equation for long waves in nonlinear dispersive systems[J].Physics Letters A,1977,61(7):429-430.
- [3]N.Taghizadeh,MMirzazadeh.Exact travelling wave solutions of Joseph-Egri(TRLW)equation by the extended homogeneous balance method[J].Applied Mathematics and computation,2012,4(1):96-104.
- [4]Bai C L.Extended Homogeneous Balance Method and Lax Pairs,Backlund Transformation[J].理论物理通讯(英文版),2002,37(6):645-648.
- [5]张维,陈自高.两类非线性发展方程的扩展G′/G法精确解[J].洛阳师范学院学报,2015,34(2):12-17.
- [6]魏帅帅,李凯辉,刘汉泽.G′/G展开法在Ricatti方程中的应用[J].河南科技大学学报,2015,36(5):92-96.
- [7]刘丽环,常晶,冯雪.求非线性发展方程行波解的(G′/G)展开法[J].吉林大学学报(理学版),2013,51(2):183-186.
- [8]盖立涛,苏道毕力格,鲍春玲.推广的简单方程方法对两个非线性发展方程的应用[J].内蒙古工业大学学报(自然科学版),2014(1):1-4.
- [9]辛祥鹏.非线性发展方程非局部对称及精确解[J].聊城大学学报(自然科学版),2018,32(1):15-20.
- [10]Guo J,Zhou Y Q,Fan F T.Bifurcation of Traveling Wave Solutions of the Joseph-Egri Equation[J].Journal of Chengdu University of Information Technology,2018,33(1):103-106.
- [11]Bekir A,Boz A.Exact solutions for nonlinear evolution equations using Exp-function method[J].Physics Letters A,2008,372(10):1619-1625.
- [12]Harun Or ROSHID,Md.Nur ALAM,M.Ali AKBAR.Exact traveling wave solutions to the(3+1)-dimensional mKdV-ZK and the(2+1)-dimensional Burgers equations viae-(x)-expansion method.Alexandria Engineering Journal,2015,54:635-644.
- [13]A.H.Bhrawy,M.Obaid.New exact solutions for the Zhiber-Shabat equation using the extended F-expansion method[J].Life Sci.J,2012,9(4):1154-1162.
- [14]Abdul-Majid Wazwaz.The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations[J].Chaos,Solitons&Fractals,2008,38(5):1505-1516.
- [15]Zayed E M E.A note on the modified simple equation method applied to Sharma-Tasso-Olver equation[J].Applied Mathematics&Computation,2011,218(7):3962-3964.
- [16]王腾飞,梁金福.扩展的辅助方程方法及其在Sharma-Tasso-Olver方程中运用[J].贵州师范大学学报(自然科学版),2018(1):90-95.
- [17]Camassa R,Holm D D.An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11):1661-1664.
- [18]Ibragimov N H.Integrating factors,adjoint equations and Lagrangians[J].Journal of Mathematical Analysis and Applications,2006,318(2):742-757.