一类重尾分布下的随机游动及其在保险理论中的应用A Kind of Generalized Random Walk and Its Application in Ruin Theory
黄宝安,焦圣华,刘子玉
摘要(Abstract):
研究了一类推广的随机游动即Sn=sum from i=1 to n Xi,其中Xi(i≥1),为一列独立同布的具有有限负均值的随机变量序列,Xi~F(i≥1),且-∞<μF<0.主要研究了F属于控制变化尾族时,P(Au>x)的渐近性质,其中Au=sum from k=1 to τοu Lk-u及τuο={n:τn=Tu},并应用其在保险理论中得到一些结果.
关键词(KeyWords): 随机游动;控制变化尾族;破产时刻;破产赤字
基金项目(Foundation): 国家自然科学基金资助项目(19801020)
作者(Author): 黄宝安,焦圣华,刘子玉
DOI: 10.16393/j.cnki.37-1436/z.2007.02.019
参考文献(References):
- [1]Asmussen S.Ruin probabilities[M].Sigapore:Word Sientific,2000.
- [2]Embrechtz P,Klüppelberg C,Mikosch T.Modclling Extremalevens[M].Berlin:Springer,1997.
- [3]Kluppelberg C.On subexponential distributions and integrated tails[J].J.Appl.Prob,1998,25:132-141.
- [4]Tang Qihe.A note on the severity of ruin in renewal model with claims of dominated variation[J].Bull.Korean Math.Soc,2003,40(4):663-669.
- [5]Ross S M.Stochastic Processes[M].New York:Wiley,1983.
- [6]Su Chun,Tang Qihe.Characterizations on heavy-tailed distributions by means of hazard rate[J].Acta Mathematicae Applicatae Sini-ca,English Series,2003,19(1):135-142.