交换环上上三角矩阵李代数的李三次导子Lie Triple Derivations of the Lie Algebra of Upper Triangular Matrice over Commutative Rings
周丽丽
摘要(Abstract):
为进一步研究导子,给出了李三次导子的概念,并利用其在矩阵基上的作用,将含有单位元的交换环上上三角矩阵李代数的任意一个李三次导子分解为内三次导子、中心三次导子之和,推广了导子的概念.
关键词(KeyWords): 上三角矩阵李代数;导子;李三次导子;交换环
基金项目(Foundation):
作者(Author): 周丽丽
DOI: 10.16393/j.cnki.37-1436/z.20170424.002
参考文献(References):
- [1]Jφndrup S.Automorphisms and derivations of upper triangular matrix ring[J].Linear Algebra Appl,1995,221:205-218.
- [2]Wang Dengyin,Yu Qiu,Ou Shikun.Derivations of certain Lie algebras of upper triangular matrices over commmutative rings[J].Journal of Mathematical Research and Exposition,2007,27(3):474-478.
- [3]Wang Dengyin,Yu Qiu.Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring[J].Linear Algebra Appl,2006,418:763-774.
- [4]Larson D R,Sourour AR.Local derviations and local automophisms of B(H)[J].Proc Sympos Pure Math,1990,51:187-194.
- [5]Kadison R.Local Derivations[J].J Algebra,1990,130:494-509.
- [6]Chrlst R.Local Derivations on Operator Algebras[J].J Funct Anal,1996,135:76-92.
- [7]Leger G F,Luks E M.Generalized derivations of Lie algebras[J].J Algebra,2000,228:165-203.
- [8]张清华,王登银,周津名.可换环上严格上三角矩阵李代数的BZ导子[J].数学杂志,2011,31(1):55-61.
- [9]关琦,卞洪亚,陈炳凯.可换环上严格上三角矩阵李代数的拟导子[J].常熟理工学院学报,2011(10):42-47.
- [10]周丽丽.可换环上上三角矩阵李代数的括积零导子[J].滨州学院学报,2015(4):68-72.
- [11]周丽丽,李娜娜,孔祥源.可换环上上三角矩阵李代数的拟导子[J].滨州学院学报,2013(3):67-72.
- [12]郭文杰.交换环上反对称李代数的BZ导子[D].大连:大连理工大学,2012.
- [13]李彩红.算子代数上的ξ-Lie可导映射[D].西安:陕西师范大学,2011.
- [14]郑克礼.李超代数的若干结构与表示[D].长春:东北师范大学,2014.