一个求解二维非线性时间分数阶波动方程的向后欧拉差分格式A Backward Euler Difference Scheme for Solving Two-Dimensional Nonlinear Time Fractional Wave Equations
张光辉
摘要(Abstract):
基于所考虑方程的等价积分-微分形式,将卷积求积公式与向后欧拉差分公式相结合,建立了一种求解二维非线性时间分数阶波动方程的数值格式.通过理论推导说明该格式在时空方向上的精度为O(τ+h_1~2+h_2~2),并用数值算例验证了该结论.
关键词(KeyWords): 时间分数阶;波动方程;卷积公式;欧拉差分
基金项目(Foundation): 安徽高校自然科学研究重点项目(KJ2021A1101,2022AH051370)
作者(Author): 张光辉
DOI: 10.16393/j.cnki.37-1436/z.2023.05.001
参考文献(References):
- [1]Koeller R.C..Application of fractional calculus to the theory of viscoelasticity[J].Appl.Mech.,1984(51):229-307.
- [2]P.Lyu,S.Vong and Z.B.Wang.A finite difference method for boundary value problems of a Caputo fractional differential equation[J].East.Asia.J.Appl.Math.,2017(07):752-766.
- [3]W.R.Schneider,W.Wyss.Fractional diffusion and wave equations[J].J.Math.Phys.,1989(30):134-144.
- [4]Z.Wang,S.Vong.Compact difference schemes for the modifified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation[J].J.Comput.Phys.,2015(277):1-15.
- [5]Y.Luchko,F.Mainardi.Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation[J].Cent.Eur.J.Phys.,2013(11):666-675.
- [6]刘发旺,庄平辉,刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社,2015:11.
- [7]吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:5.
- [8]J.F.Huang,J.N.Zhang,S.Arshad,et al.A numerical method for two-dimensional multi-term time-space fractional nonlinear diffffusion-wave equations[J].Appl.Numer.Math.,2021(159):159-173.
- [9]J.F.Huang,S.Arshad,Y.D.Jiao,et al.Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations[J].E.Asian.J.Appl.Math,2019,9(03):538-557.
- [10]S.F.Hu,W.L.Qiu,H.B.Chen.A backward Euler difference scheme for the integro-differential equations with the multi-term kernels[J].International Journal of Computer Mathematics,2020,97(06):1254-1267.