关于Alzer’s不等式的一个注记A Note of Alzer's Inequality
江庆华
摘要(Abstract):
对Alzer′s不等式的左端作进一步推广,并利用数学归纳法及微分中值定理证明了如下结果:对a,b∈R+及r∈R+,a(na+n m+)b+b<[1n∑in=1(ai+b)r/n+1m∑ni+=m1(ai+b)r]1r.
关键词(KeyWords): Alzer′s不等式;Cauchy中值定理;数学归纳法
基金项目(Foundation):
作者(Author): 江庆华
DOI: 10.16393/j.cnki.37-1436/z.2009.05.007
参考文献(References):
- [1]Martins J S.Arithmetic and geometric means,an application to Lorentz Sequence spaces[J].Math Nachr,1988,(139):281-288.
- [2]Alzer H.on an inequality of H.Minc and L.Sathre[J].J of Mathematical Analysis and Applications,1993,179(2):396-402.
- [3]Sandor J.On an inequality of Alzer[J].J of Mathematical Analysis and Applications,1995,(192):1034-1035.
- [4]Qi F.Generalization of Alzer’s inequality[J].J of Mathematical Analysis and Applications,1999,240(1):294-297.
- [5]Xu Zengkun.A General form of Alzer’s inequality[J].Computers&Mathematics with Applications,2002,(44):365-373.