宽带噪声激励下含分数阶时滞系统的随机分岔Stochastic Bifurcation of Fractional-Order Delay Feedback System under Broadband Noise
盛正大,王媛,王慧男,王芳
摘要(Abstract):
研究了在外部宽带噪声激励下含分数阶耦合时滞反馈的Van der pol系统的随机分岔.利用一组拟周期函数近似替换分数阶微分,通过随机平均法得到系统的伊藤随机微分方程,进一步求出与系统幅值相关的平稳概率密度函数.使用Matlab绘制联合概率密度图,直观地展现了系统发生的稳态变化,并依据图像分析在时滞参数与分数阶阶次分别改变的情况下系统产生的随机P-分岔.结果表明时滞参数和分数阶阶次会对Van der pol系统的动力学特性产生影响,即当时滞参数和分数阶阶次在一定阈值内变化时,会诱导Van der pol系统产生P-分岔现象.
关键词(KeyWords): 随机P-分岔;随机平均法;Van der pol方程;平稳概率密度函数;宽带噪声
基金项目(Foundation):
作者(Author): 盛正大,王媛,王慧男,王芳
DOI: 10.16393/j.cnki.37-1436/z.2023.05.005
参考文献(References):
- [1]F.Moss,P.V.E.McClintock.Noise in Nonlinear Dynamical Systems[M].Cambridgeshire,UK:Cambridge University Press,1989.
- [2]Mathieu Gaudreault,Francois Drolet,Jorge Vinals.Bifurcation threshold of the delayed Van der pol oscillator under stochastic modulation[J].2012,85(05):56-57.
- [3]Shinji Doi,Junko Inoue,Sadatoshi Kumagai.Spectral analysis of stochastic phase lockings and stochastic bifurcations in the sinusoidally forced Van der pol oscillator with additive noise[J].Journal of statistical physics,1988,90(1988):1107-1127.
- [4]R.Mbakob Yonkeu,R.Yamapi,G.Filatrella.Stochastic bifurcations induced by correlated noise in a biorhythmic Van der pol system[J].Communications in Nonlinear Science and Numerical Simulation,2016,33(2016):70-84.
- [5]Hung S S,Lee T T.Memoryless H∞controllers for singular systems with delayed state and control[J].Journal of the Franklin Institude,1999,336:911-923.
- [6]Datta R,Dey R,Bhattacharya B,et al.Stability and stabilizayion of T-S fuzzy systems with variable delays via new Bessel-Legendre polynomial based relaxed intergral inequality[J].Information Sciences,2020,522(2020):99-123.
- [7]王明芬.时滞Van der pol方程周期解和hopf分支的等价性[J].2008:27(06):7-11.
- [8]潘家齐,岳锡亭.具有限时滞lienard方程的hopf分支公式[J].数学年刊,1991(01):50-56.
- [9]岳锡亭,潘家齐.具有限时滞Van der pol方程的周期扰动hopf分支[J].数学年刊,1992(02):135-142.
- [10]付守才,齐鸣鸣.以滞量为参数的Van der pol型方程的hopf分支[J].长春师范学院学报,1999,18(05):4-10.
- [11]M.M.Klosek.Multiscale analysis of effects of additive and multiplicative noise on delay differential equations near a bifurcation point[J].Acta Physica Polonica B,2004,35(04):13-87.
- [12]M.Gaudreault,F.Drolet.Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback[J].Physical Review E,2010,82(05):51-54.
- [13]王军,申永军,张建超,等.一类分数阶分段Duffing振子的混沌研究[J].振动与冲击,2022,41(13):8-16.
- [14]梅立泉,郭士民.等离子体物理中分数阶模型数值解法研究进展[J].工程数学学报,2022,39(04):511-521.
- [15]谢玲玲,宁康智,姚浚义.分数阶Cuk变换器的PI~λD~μ控制研究[J].现代电子技术,2022,45(17):151-156.
- [16]Assabaa M,Ladaci S,Loiseau J J,et al.Fractional order adaptive controller for stabilised systems via high-gain feedback[J].IET Control Theory and Applications,2013,7(06):822-828.
- [17]罗欢,郝冰,陈付彬.Caputo分数阶时滞细胞神经网络的稳定性分析[J].数学的实践与认识,2022,52(07):248-255.
- [18]张敬凯,徐家发,柏仕坤.一类Caputo型分数阶微分方程边值问题多正解的存在性[J].重庆师范大学学报(自然科学版),2022,39(04):87-91.