变分不等式的改进的惯性投影收缩算法An Improved Inertial Projection Shrinkage Algorithm for Variational Inequalities
陈欢欢,李耿华
摘要(Abstract):
在实希尔伯特中,基于已有的求解非单调变分不等式问题的算法,提出了一类改进的惯性投影收缩算法.该算法通过引入惯性项的方式提出了一种带有Armijo线搜索的惯性次梯度算法,使更新过程中既利用了当前梯度信息,又考虑了先前的迭代方向,从而在加速收敛的同时避免了传统投影算法中可能出现的震荡问题,分析了该算法的收敛性并给出了理论证明,表明在一定条件下算法具有全局收敛性.并结合数值实验验证了改进的算法的有效性.
关键词(KeyWords): 变分不等式;强收敛;Lipschitz连续;非单调
基金项目(Foundation): 青年科学基金项目(12001070);; 重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0231);; 重庆市教委自然科学基金项目(KJQH202400833);; 重庆市研究生科研创新项目(yjscxx2024-284-243)
作者(Author): 陈欢欢,李耿华
DOI: 10.16393/j.cnki.37-1436/z.2025.02.014
参考文献(References):
- [1]Vuong P T,Shehu Y.Convergence of an Extragradient-type Method for Variational Inequality with Applications to Optimal Control Problems[J].Numerical Algorithms,2019,81(01):269-291.
- [2]Chen J,K?bis E,Yao J.Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints[J].Journal of Optimization Theory and Applications,2019,181(02):411-436.
- [3]Jiawei C,Xingxing J,Elisabeth K,et al.Tikhonov Type Regularization Methods for Inverse Mixed Variational Inequalities[J].Optimization,2020,69(02):401-413.
- [4]Ansari Q H,Islam M,Yao J C.Nonsmooth Variational Inequalities on Hadamard manifolds[J].Applicable Analysis,2020,99(02):340-358.
- [5]Zhao X,K?bis M A,Yao Y,et al.A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems[J].Journal of Optimization Theory and Applications,2021,190(01):82-107.
- [6]Korpelevich G M.The Extra Gradient Method for Finding Saddle Points and Other Problems[J].Matecon,1976,12:747-756.
- [7]Tseng P.A Modified Forward-backward Splitting Method for Maximal Monotone Mappings[J].SIAM Journal on Control and Optimization,2000,38(02):431-446.
- [8]Censor Y,Gibali A,Reich S.The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert space[J].Journal of Optimization Theory and Applications,2011,148(02):318-335.
- [9]Censor Y,Gibali A,Reich S.Extensions of Korpelevich's Extragradient Method for the Variational Inequality Problem in Euclidean space[J].Optimization,2012,61(09):1119-1132.
- [10]Li Q D,Dan J,Aviv G.A Modified Subgradient Extragradient Method for Solving the Variational Inequality Problem[J].Numerical Algorithms,2018,79(03):927-940.
- [11]Bauschke H H,Combettes P L.A Weak-to-strong Convergence Principle for Fejér-monotone Methods in Hilbert spaces[J].Mathematics of operations research,2001,26(02):248-264.
- [12]Shehu Y,Dong Q L,Jiang D.Single Projection method for Pseudo-monotone Variational Inequality in Hilbert Spaces[J].Optimization,2019,68(01):385-409.
- [13]Gibali A,Thong D V,Tuan P A.Two Simple Projection-type Methods for Solving Variational Inequalities[J].Analysis and Mathematical Physics,2019,9:2203-2225.
- [14]Olakunle L J.An Inertial Projection and Contraction Method with a Line Search Technique for Variational Inequality and Fixed Point Problems[J].Optimization,2022,71(12):3485-3514.
- [15]Dong Q L,Cho Y J,Zhong L L,et al.Inertial Projection and Contraction Algorithms for Variational Inequalities[J].Journal of Global Optimization,2018,70:687-704.
- [16]Hieu D V,Strodiot J J,Muu L D.An Explicit Extragradient Algorithm for Solving Variational Inequalities[J].Journal of Optimization Theory and Applications,2020,185:476-503.
- [17]Shehu Y,Iyiola O S.Projection Methods with Alternating Inertial Steps for Variational Inequalities:Weak and Linear Convergence[J].Applied Numerical Mathematics,2020,157:315-337.
- [18]Yang J,Liu H.Strong Convergence Result for Solving Monotone Variational Inequalities in Hilbert space[J].Numerical Algorithms,2019,80:741-752.
- [19]Liu H,Yang J.Weak Convergence of Iterative Methods for Solving Quasimonotone Variational Inequalities[J].Computational Optimization and Applications,2020,77(02):491-508.
- [20]Van Hieu D,Anh P K,Muu L D.Modified Extragradient-like Algorithms with New Stepsizes for Variational Inequalities[J].Computational Optimization and Applications,2019,73:913-932.
- [21]Tan B,Li S,Cho S Y.Inertial Projection and Contraction Methods for Pseudomonotone Variational Inequalities with Non-Lipschitz Operators and Applications[J].Applicable Analysis,2023,102(04):1199-1221.
- [22]Tan B,Li S.Modified Inertial Projection and Contraction Algorithms with Non-monotonic Step Sizes for Solving Variational Inequalities and Their Applications[J].Optimization,2024,73(03):793-832.
- [23]Thong D V,Gibali A.Two Strong Convergence Subgradient Extragradient Methods for Solving Variational Inequalities in Hilbert Spaces[J].Japan Journal of Industrial and Applied Mathematics,2019,36:299-321.