一类四元数矩阵保左特征值的线性映射条件A Linear Map Preserving the Left Eigenvalue of Certain Quaternion Matrices
袁庚
摘要(Abstract):
设Q表示四元数集合,Mn(Q)表示n×n四元数矩阵的集合.若M、N∈Mn(Q)分别是下三角可逆四元数矩阵且φ(A)=MAN,证明了对于任意下三角四元数矩阵A∈Mn(Q),如果φ(A)与A具有相同的左特征值,当且仅当M、N和A中的元素mss,nss和ass的虚部对应成比例,且mssnss=1,或虚部对应为零.
关键词(KeyWords): 四元数矩阵;保左特征值;线性映射
基金项目(Foundation): 山东省博士基金资助项目(BS2013SF014)
作者(Author): 袁庚
DOI: 10.16393/j.cnki.37-1436/z.2014.05.004
参考文献(References):
- [1]Zhang Fuzhen.Quaternion and Matrices of Quaternions[J].Linear Algebra and Its Application,1997,251:21-57.
- [2]Bunse-Gerstuer A,Byers R,Mehrmann V.A Quaternion QR Algorithm[J].Numer.Math,1989,55:83-95.
- [3]Wood R M W.Quaternionic Eigrnvalues[J].Bull.London math,Soc,1985,17:137-138.
- [4]Huang Liping,Wasin S.On the Eigenvalues of a Quaternionic Matrix[J].Linear Algebra and Its Application,2001,323:105-116.
- [5]Chen Longxuan.Definition of Determinant and Cramer Solutions over the Quaternion[J].Field.Acta Math,Sinica,New Series,1991,7(2):171-180.