一类正线性映射的可分解性Decomposable Nature of a Certain Positive Linear Map
朱青
摘要(Abstract):
定义线性映射Ф=φ1φ2:M2(C)M2(C)→M2(C)M2(C)为Ф(AB)=φ1(A)φ2(B),A,B∈M2(C),其中φi(i=1,2)为M2(C)到M2(C)上的线性映射.证明了正线性映射Ф=φ1φ2是可分解的,并给出了co-全正映射的一个充分必要条件.
关键词(KeyWords): 正线性映射;全正映射;co-全正映射
基金项目(Foundation): 菏泽学院研究与发展项目(XY08SX01)
作者(Author): 朱青
DOI: 10.16393/j.cnki.37-1436/z.2011.05.005
参考文献(References):
- [1]Strmer E.Positive linear maps of operator algebras[J].Acta Math,1963,110(1):233-278.
- [2]Woronowicz S.Positive maps of low dimensional matrix algebras[J].Rep.Math.Phys,1976,10(2):165-183.
- [3]Choi M.Completely positive linear maps on complex matrices[J].Lin.Alg.Appl,1975,10(3):285-290.
- [4]Takesaki M.Theory of operator algebra I[M].Berlin:Springer-Verlag,2002.
- [5]Majewski W A,Marciniak M.On a characterization of positive maps[J].Phys.A:Math.Gen,2001,34(9):5863-5874.