一类具有阶段结构的时滞捕食系统的周期解Periodic Solution of a Delayed Predator-prey System with Stage Structure
毕殿杰,陈涛
摘要(Abstract):
研究一类捕食者具有阶段结构和Crowley-Martin功能性反应的时滞捕食系统.通过分析特征方程根的分布,得到系统正平衡点的局部稳定性和局部Hopf分叉的存在性的充分条件.进一步,利用中心流形定理和规范型理论,给出确定Hopf分叉方向和分叉周期解稳定性的计算公式.最后,利用仿真实例证明了理论分析结果的正确性.
关键词(KeyWords): Hopf分叉;时滞;捕食系统;周期解
基金项目(Foundation): 2014年安徽财经大学校级项目(ACKY1433);; 2013年安徽财经大学校级重点项目(ACKY1305ZDB)
作者(Author): 毕殿杰,陈涛
DOI: 10.16393/j.cnki.37-1436/z.2014.02.001
参考文献(References):
- [1]宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分叉[J].数学年刊,2004,25A(6):783-790.
- [2]Yang Yu.Hopf bifurcation in a two-competitor,one-prey system with time delay[J].Applied Mathematics and Computation,2009,214(1):228-235.
- [3]Liu Juan,Li Yimin.Hopf bifurcation analysis of a predator-prey system with delays[J].浙江大学学报(理学版),2013,40(6):618-626.
- [4]刘娟,李医民.具有功能性反应的微分生态模型的极限环分析[J].四川师范大学学报(自然科学版),2012,35(4):500-504.
- [5]鲁铁军,王美娟.一类基于比率的捕食-食饵系统的全局稳定性分析[J].应用数学和力学,2008,29(4):447-452.
- [6]Shi Xiangyun,Zhou Xueyong,Song Xinyu.Analysis of a stage-structured predator-prey model with Crowley-Martin function[J].Journal of Applied Mathematics andComputing,2011,36(1-2):459-472.
- [7]Li Feng,Li Hongwei.Hopf bifurcation of a predator-prey modelwith time delay and stage structure for the prey[J].Mathematical and Computer Modelling,2012,55(3-4):672–679.
- [8]Xu Rui.Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response[J].Nonlinear Dynamics,2012,67(2):1683-1693.
- [9]Xu Rui.Global dynamics of a predator-prey model with time delay and stage structure for the prey[J].Nonlinear Analysis:Real World Applications,2011,12(4):2151-2162.
- [10]Hu Guangping,Li Xiaoling.Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[J].Chaos,Solitons and Fractals,2012,45(3):229-237.
- [11]B.D.Hassard,N.D.Kazarinoff,Y.H.Wan.Theory and Applications of Hopf Bifurcation[M].Cambridge University Press,Cambridge,1981.